< >
Hello, guest! Please log in or register.

The PokéCommunity

Go Back     The PokéCommunity Forums > Squirrel Conversation Between Squirrel and Olli


Conversation Between Squirrel and Olli
Showing Visitor Messages 16 to 30 of 3011
  1. Squirrel
    April 10th, 2015 10:52 AM
    Electroplating is a process that uses electric current to reduce dissolved metal cations so that they form a coherent metal coating on an electrode. The term is also used for electrical oxidation of anions onto a solid substrate, as in the formation silver chloride on silver wire to make silver/silver-chloride electrodes. Electroplating is primarily used to change the surface properties of an object (e.g. abrasion and wear resistance, corrosion protection, lubricity, aesthetic qualities, etc.), but may also be used to build up thickness on undersized parts or to form objects by electroforming.

    The process used in electroplating is called electrodeposition. It is analogous to a galvanic cell acting in reverse. The part to be plated is the cathode of the circuit. In one technique, the anode is made of the metal to be plated on the part. Both components are immersed in a solution called an electrolyte containing one or more dissolved metal salts as well as other ions that permit the flow of electricity. A power supply supplies a direct current to the anode, oxidizing the metal atoms that it comprises and allowing them to dissolve in the solution. At the cathode, the dissolved metal ions in the electrolyte solution are reduced at the interface between the solution and the cathode, such that they "plate out" onto the cathode. The rate at which the anode is dissolved is equal to the rate at which the cathode is plated, vis-a-vis the current through the circuit. In this manner, the ions in the electrolyte bath are continuously replenished by the anode.[1]

    Other electroplating processes may use a non-consumable anode such as lead or carbon. In these techniques, ions of the metal to be plated must be periodically replenished in the bath as they are drawn out of the solution.[2] The most common form of electroplating is used for creating coins such as pennies, which are small zinc plates covered in a layer of copper.

    The cations associate with the anions in the solution. These cations are reduced at the cathode to deposit in the metallic, zero valence state. For example, in an acid solution, copper is oxidized at the anode to Cu2+ by losing two electrons. The Cu2+ associates with the anion SO42− in the solution to form copper sulfate. At the cathode, the Cu2+ is reduced to metallic copper by gaining two electrons. The result is the effective transfer of copper from the anode source to a plate covering the cathode.

    The plating is most commonly a single metallic element, not an alloy. However, some alloys can be electrodeposited, notably brass and solder.

    Many plating baths include cyanides of other metals (e.g., potassium cyanide) in addition to cyanides of the metal to be deposited. These free cyanides facilitate anode corrosion, help to maintain a constant metal ion level and contribute to conductivity. Additionally, non-metal chemicals such as carbonates and phosphates may be added to increase conductivity.

    When plating is not desired on certain areas of the substrate, stop-offs are applied to prevent the bath from coming in contact with the substrate. Typical stop-offs include tape, foil, lacquers, and waxes.

    Initially, a special plating deposit called a "strike" or "flash" may be used to form a very thin (typically less than 0.1 micrometer thick) plating with high quality and good adherence to the substrate. This serves as a foundation for subsequent plating processes. A strike uses a high current density and a bath with a low ion concentration. The process is slow, so more efficient plating processes are used once the desired strike thickness is obtained.

    The striking method is also used in combination with the plating of different metals. If it is desirable to plate one type of deposit onto a metal to improve corrosion resistance but this metal has inherently poor adhesion to the substrate, a strike can be first deposited that is compatible with both. One example of this situation is the poor adhesion of electrolytic nickel on zinc alloys, in which case a copper strike is used, which has good adherence to both.
  2. Olli
    April 7th, 2015 3:56 AM
    I agree with Tom that you should probably just kill yourself, digimon traitor
  3. Olli
    April 2nd, 2015 2:54 AM
    shut up
  4. Squirrel
    April 1st, 2015 6:36 PM
    spread the shut up of the shut up to one million shut up or you will shut up by shut up
  5. Olli
    April 1st, 2015 6:23 AM
    Spread the love of the care bears to one million of your contacts or you will catch a nasty cold by midnight
  6. Olli
    March 27th, 2015 10:46 AM
    screw you, little salty russian
  7. Squirrel
    March 27th, 2015 10:31 AM
  8. Olli
    March 27th, 2015 10:29 AM
    omg ur blue again
  9. Olli
    March 27th, 2015 10:20 AM
    CONGRATS! There was no doubt this was gonna happen
  10. Squirrel
    March 24th, 2015 7:09 AM
  11. Squirrel
    March 24th, 2015 7:09 AM
  12. Squirrel
    March 24th, 2015 7:09 AM
    my head's spinning around I can't see clear no more
  13. Squirrel
    March 24th, 2015 7:08 AM
    'cos I'm not thinking straight
  14. Squirrel
    March 24th, 2015 7:08 AM
    I'll let you set the pace
  15. Squirrel
    March 24th, 2015 7:08 AM
    to life

  All times are GMT -8. The time now is 3:36 PM.

Contact Us Archive Privacy Statement Terms of Service Top