If you can do simple math, tell me what is the integral of F·dr (dot product between the vectors F and dr), where F is the vectorial function whose coordinates are given by (10x^4 - 2x*y^3 ; -3x^2*y^2) and dr is the position differential vector of coordinates (dx; dy) along the path given by x^4 - 6x*y^3=4y^2, from the starting point (0;0) to the final point (2;1).
It's quite simple actually.
Blaarh, I tried to translate the names of that stuff as best as I could.
/end show-off
216798
Also, I should do the same as Went.