Welcome to PokéCommunity! Register now and join one of the best fan communities on the 'net to talk Pokémon and more! We are not affiliated with The Pokémon Company or Nintendo.
If you can do simple math, tell me what is the integral of F·dr (dot product between the vectors F and dr), where F is the vectorial function whose coordinates are given by (10x^4 - 2x*y^3 ; -3x^2*y^2) and dr is the position differential vector of coordinates (dx; dy) along the path given by x^4 - 6x*y^3=4y^2, from the starting point (0;0) to the final point (2;1).
It's quite simple actually.
Spoiler:
Spoiler:
Spoiler:
Spoiler:
The curl of the function F is zero (d/dy (10x^4 - 2x*y^3) = -6x*y^2 = d/dx (-3x^2*y^2)), and as such the path you integrate the function along doesn't matter. Find the scalar function G whose derivative with respect to x is the first coordinate of F and whose derivative with respect to y is the second coordinate of F ---> G=2x^5 - x^2*y^3. Just do G(2;1)-G(0,0) and done! The final result is 60.
Blaarh, I tried to translate the names of that stuff as best as I could.